Lattice homomorphisms of non-periodic groups
نویسندگان
چکیده
منابع مشابه
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولHalf-homomorphisms of Groups
Let G and G' be multiplicative systems. A half-homomorphism of G into G' will mean a mapping a—>a' of G into C such that for all a, bEG, (ab)'=a'V or b'a'. An anti-homomorphism is a mapping such that always (ab)' = b'a'. The terms half-isomorphism, etc., are defined similarly. It will be shown that any half-homomorphism of a group G into a group G' is either a homomorphism or an anti-homomorphi...
متن کاملLattice Homomorphisms Induced by Group Homomorphisms
Introduction. By a lattice homorphism of a group G onto a group G' we mean a single-valued mapping of the lattice L(G) of subgroups of G onto the lattice L(G') of subgroups of G', which preserves all unions and intersections, that is, which is subject to the conditions 1. (U,S,)0 = U,(S¿), 2. (r\vSr) = Ç)ASd>), for every (finite or infinite) set of subgroups 5„ of G. We call proper any l...
متن کاملIdeal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملHomomorphisms between Diffeomorphism Groups
For r ≥ 3, p ≥ 2, we classify all actions of the groups Diffc(R) and Diff+(S) by Cdiffeomorphisms on the line and on the circle. This is the same as describing all nontrivial group homomorphisms between groups of compactly supported diffeomorphisms on 1-manifolds. We show that all such actions have an elementary form, which we call topologically diagonal. As an application, we answer a question...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1991
ISSN: 0021-8693
DOI: 10.1016/0021-8693(91)90191-a